[bookmark: _jcp7bralemqc]Invoices Integration into your ERP

[bookmark: _el852u6v48rj]Introduction
[bookmark: _ccw4rldt53nd]General API Setup Considerations
Get Started with the Coupa API
API Key Security (will eventually get deprecated)
Open Connect API Access (R29 onward)
JSON/XML
GraphQL (R30 onward)
[bookmark: _zcoii7azq14j]Limited Payload - Fields & API filters
Coupa's API returns a lot of data by default (for example: full objects for associated objects). The API return payloads can be very large and therefore slow. This can be a problem for customers that do not need the extraneous data not to mention the unnecessary consumption of resources. 
To make things easier, Coupa has the concept of the “fields” parameter & API Filters that return a limited JSON or XML response instead of the entire schema, and all associations, for an object.
API Response Filters
API: Using the new API query parameter "fields", Alternative to "return object"
[bookmark: _jbr0tkppld3g]Use cases described in this Article
The Invoices usually have an internal number in the ERP. In this document we take the assumption that this ERP Document number is a Custom field in the Coupa Invoice Header.

In our example the custom field cf_erp_invoice_number was created with name ERP Invoice Number


This Article describes the 3 different options to Integrate Coupa Invoices into your ERP(for both creation and updates)

These options will change the way you can monitor your integrations from Coupa	Comment by Andy Prince: The option chosen (1, 2 or 3) should be driven by business process and to-be integration support model, not just the technical teams decision

· Option 1: Simple monitoring based on custom field(s) you define on the Invoice Header
· Option 2: Advanced monitoring using Integration History records
· Option 3: Leverage full Coupa Integrations monitoring


For the 3 options, the Coupa Invoices are pushed to the ERP based on the Export Flag.
In case of an error, in the Integration of a Invoice, a manual change will be required on the Invoice in the Coupa UI: this change will reset the Export Flag, and the Invoice will therefore be considered in the next run

We recommend to have the following option set  (request to Coupa Support)

Reset Invoice last exported at for every change
This setting only applies to the UI, changes made with API don’t change the Exported status.
[bookmark: _grq6lqifjnaj]Create dedicated Integration and Contact for API	Comment by Andy Prince: Worth mentioning multiple Integrations if pushing PO's, GR and/or Invoices to multiple ERP's. You can then have different Contacts per object then. This is a very useful approach for the larger multi country/ERP implementations where errors need to be forwarded to different teams (Integration Contacts). I've worked on a few implementations now where the partner has focused on the first country/ERP and used a Standard Integration, then realised the mistake they've made and has to change the existing integration to use a new 'country/ERP' specific one
For option 2 & 3, you will need to create:

· A dedicated Integration for each API Orchestration you implement.
[image: ]	Comment by Andy Prince: Might be worth adding some info on good naming conventions for the Integration code. I always use customer.object.api.direction i.e. customer.invoice.api.outbound or customer.invoice.api.inbound. I'm sure everyone has their own opinion, but would be great if we could all align on this.
· One or several Integration contact(s) for each integration, that will be alerted for any failed integration
[image: ]


We recommend to have the following option set  (request to Coupa Support)

Enable link to Integration History by Document Type
This setting adds a link in the setup page to view full Integration History per document type



[bookmark: _c78h7p79oglq]Option 1: Simple monitoring based on custom field(s) 
[bookmark: _v2sxj481pcrj]Description
In this scenario, for each Invoice we:
· Add the current Integration status in one or several Invoice header custom field(s)

In our example the custom field cf-integration-status was created with name Integration Status

You will use the Standard Invoice Data Table to follow up the Integration status of your documents.

https://<your instance hostname>/invoices
[image: ]

[bookmark: _ey31q2fc4qd7]Orchestration Diagram
[image: ]
	Comment by Troy Rothert: @vadim.courtheoux@coupa.com should we recommend voiding in Coupa and exporting or only voiding in ERP? **Coupa Recommendation is to Void in ERP and then Void in Coupa**	Comment by Vadim Courtheoux: You mean voiding in ERP and integrate from ERP to Coupa? Any reason why you see this as a better approach?
[bookmark: _wg5tgkfslbg8]Steps / API calls details

	Step 1
	Get the list and details of the Coupa Invoices to create/update in the ERP.
Selection criteria includes the Export Flag and Invoice Status.

	Method
	GET

	API
	https://<your instance hostname>/api/invoices/

	Query Params
	fields=<your API filter name>
offset=10	Comment by Andy Prince: Query - why do you put offset=10 in step 1? Is this just an example? I generally advise against using the offset (some older middleware platforms struggle with our large payloads and actually have to 'limit' the returned payload) and adjust the integration frequency to aim for <50 records per run. This is why I push for an Operational Sizing document at Integration Kick Off, as we are then dealing with real expected volumes (facts)
exported=false
status[in]=approved,voided

	Sample URL
	https://<your instance hostname>/api/invoices?filter=<your API filter name>&offset=10&exported=false&status[in]=approved,voided	Comment by Andy Prince: Query - why do you put offset=10 in step 1? Is this just an example? I generally advise against using the offset (some older middleware platforms struggle with our large payloads and actually have to 'limit' the returned payload) and adjust the integration frequency to aim for <50 records per run. This is why I push for an Operational Sizing document at Integration Kick Off, as we are then dealing with real expected volumes (facts)

	Query Body sample
	N/A

	Response Body sample
	[image: ]




	Step 2
	Mark individual Invoice as exported

	Method
	PUT

	API
	https://<your instance hostname>/api/invoices/<Invoice id>

	Query Params
	exported=true
fields=["id","exported"]

	Sample URL
	https://<your instance hostname>/api/invoices/<Invoice id>?exported=true&fields=["id","exported"]

	Query Body sample
	N/A

	Response Body sample
	{
  "id": <Invoice id>,
  "exported": true
}



That’s where the creation/update of the Invoice in the ERP happens


	Step 3
	Update a Custom Fields for Reporting and ERP document number

	Method
	PUT

	API
	https://<your instance hostname>/api/invoices/<Invoice id>

	Query Params
	fields=["id","exported",{ "custom_fields": {} }]

	Sample URL
	https://<your instance hostname>/api/invoices/<Invoice id>?fields=["id","exported",{ "custom_fields": {} }]

	Query Body sample
	{
  "custom-fields": {
    "cf-erp-invoice-number": "<Invoice number in the ERP>",
    "cf-integration-status": "Success: The Invoice was replicated in your ERP"
  }}
OR
{
  "custom-fields": {	Comment by Nelly Rathi: In Case of Failure this custom field 'cf-integration-status' has to be reset manually once the issue is resolved as part of the business process.
    "cf-integration-status": "Failure: The Invoice could not be replicated in your ERP"
  }}

	Response Body sample
	{ "id": <Invoice id>,
  "exported": true,
  "custom-fields": {
    "cf-erp-invoice-number": "<Invoice number in the ERP>",
      "cf-integration-status": "Success: The Invoice was replicated in your ERP"
  }}
OR
{ "id": <Invoice id>,
  "exported": true,
  "custom-fields": {
    "cf-erp-invoice-number": null,
      "cf-integration-status": "Error: The Invoice was properly replicated in your ERP"	Comment by Nelly Rathi: typo : should be 'Success'
  }}






[bookmark: _qsf3yk6fikh]Option 2: Advanced monitoring using Integration History
[bookmark: _84ryg6z691q5]Description
In this scenario, for each Invoice we:
· Resolve the previous Integration History Record for the document
· Create an Integration History Record
· Create an Alert to the Integration Contact in case of an error

Each document includes the Integration History details
[image: ][image: ]


You will use the Standard Invoice Integration History Data Table to follow up the Integration status of your documents

https://<your instance hostname>/integration_history_records/invoices
[image: ]

You can use a filter on Response Code to differentiate between documents successfully replicated and documents that failed
[image: ]
[bookmark: _m254tj81re5u]

[bookmark: _3vdo3ewkwkvj]Orchestration Diagram
[image: ]

[bookmark: _ath06859oqax]Steps / API calls details

	Step 1
	Get the list and details of the Coupa Invoices to create/update in the ERP.
Selection criteria includes the Export Flag and Invoice Status.

	Method
	GET

	API
	https://<your instance hostname>/api/invoices/

	Query Params
	filter=<your API filter name>
offset=10
exported=false
status[in]=approved,voided

	Sample URL
	https://<your instance hostname>/api/invoices?filter=<your API filter name>&offset=10&exported=false&status[in]=approved,voided

	Query Body sample
	N/A

	Response Body sample
	[image: ]




	Step 2
	Mark individual Invoice as exported

	Method
	PUT

	API
	https://<your instance hostname>/api/invoices/<Invoice id>

	Query Params
	exported=true
fields=["id","exported"]

	Sample URL
	https://<your instance hostname>/api/invoices/<Invoice id>?exported=true&fields=["id","exported"]

	Query Body sample
	N/A

	Response Body sample
	{
  "id": <Invoice id>,
  "exported": true
}



That’s where the creation/update of the Invoice in the ERP happens


	Step 3a
	Get unresolved Integration History Record

	Method
	GET

	API
	https://<your instance hostname>/api/integration_history_records


	Query Params
	resolved=false
document-type=InvoiceHeader
document-id=<Invoice id>
fields=["id","document-id","status","resolved"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records?resolved=false&document-type=InvoiceHeader&document-id=<Invoice id>&fields=["id","document-id","status","resolved"]


	Query Body sample
	N/A

	Response Body sample
	[
  {
    "id": <Old Integration History Record id>,
    "document-id": <Invoice id>,
    "status": "Error",
    "resolved": false
  }
]




	Step 3b
	Resolve previous Integration History Record

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_history_records/<Old Integration History Record id>/resolve


	Query Params
	fields=["id","document-id","status","resolved"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records/<Old Integration History Record id>/resolve?fields=["id","document-id","status","resolved"]


	Query Body sample
	N/A

	Response Body sample
	[
  {
    "id": <Old Integration History Record id>,
    "document-id": <Invoice id>,
    "status": "Error",
    "resolved": true
  }
]




	Step 4a
	Update a Custom Fields for ERP document number (Success)

	Method
	PUT

	API
	https://<your instance hostname>/api/invoices/<Invoice id>

	Query Params
	fields=["id","exported",{ "custom_fields": {} }]

	Sample URL
	https://<your instance hostname>/api/invoices/<Invoice id>&fields=["id","exported",{ "custom_fields": {} }]

	Query Body sample
	{
  "custom-fields": {
    "cf-erp-invoice-number": "<Invoice number in the ERP>"
  }}

	Response Body sample
	{ "id": <Invoice id>,
  "exported": true,
  "custom-fields": {
    "cf-erp-invoice-number": "<Invoice number in the ERP>"
  }}




	Step 4b
	Create Integration History (Success)

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_history_records

	Query Params
	fields=["id","document-id","status"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records?fields=["id","document-id","status"]

	Query Body sample
	{
  "document-type": "InvoiceHeader",
  "document-id": <Invoice id>,
  "document-status":"<Invoice status>",
  "contact-alert-type": "Functional",
  "status": "Success",
  "integration": {"code":"<Customer Integration id>"},
  "responses": [
    {
      "response-code": "Success-1234",
      "response-message": "The integration in the ERP went well"
    }
  ]
}

	Response Body sample
	{
  "id": <New Integration History Record id>,
  "document-id": <Invoice id>,
  "status": "Success"
}




	Step 4c
	Create Integration History (Error) and alert to Integration Contact

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_history_records/create_alert

	Query Params
	fields=["id","document-id","status"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records/create_alert?fields=["id","document-id","status"]

	Query Body sample
	{
  "document-type": "InvoiceHeader",
  "document-id": <Invoice id>,
  "document-status":"<Invoice status>",
  "contact-alert-type": "Functional",
  "status": "Error",
  "integration": {"code":"<Customer Integration id>"},
  "responses": [
   {
      "response-code": "Failure-CC",
      "response-message": "Header: Period is currently closed for Booking"
    },
    {
      "response-code": "Failure-CC",
      "response-message": "Line 1: Cost center CA234 is closed for invoicing"
    }

  ]
}

	Response Body sample
	{
  "id": <New Integration History Record id>,
  "document-id": <Invoice id>,
  "status": "Error"
}


[bookmark: _kzc0c49p76k2]
[bookmark: _o1yyzy27b9mh]
Option 3: Leverage full Coupa Integrations monitoring
[bookmark: _myiff1438i3j]Description
In this scenario, we create an Integration run that tracks
· The status of the Integration (pending/started/errored/successful/failed)
· The total number of Invoice processed
· The number of Success and Errors
· The list of Integration Errors and their statuses (resolved or not)

For each Invoice we:
· Resolve the previous Integration History Record for the document
· Create an Integration History Record
· In case of an error, create an Integration Error and an Alert to the Integration Contact

You will be able to monitor all Integration Runs for your Integration

https://<your instance hostname>/integrations/<your integration id>/integration_runs
[image: ]



You will use the Standard Invoice Integration Error Data Table to list all Invoices with Integration Error pending resolution

https://<your instance hostname>/integration_errors
[image: ]

You will use the Standard Invoice Integration History Data Table to list all Invoices successfully Integrated

https://<your instance hostname>/integration_history_records/invoices
[image: ]
[bookmark: _3tb6i14kixzx]Orchestration Diagram
[image: ]

[bookmark: _9ygmwmud2cgl]Steps / API calls details

	Step 1
	Create Integration Run

	Method
	POST

	API
	https://<your instance hostname>/api/integration_runs

	Query Params
	N/A

	Query Body sample
	{
  "integration": {
    "code": "{{Integration_Code}}"
  }}

	Response Body sample
	{
  "id": <Integration Run ID>,
...
}




	Step 2
	Get the list and details of the Coupa Invoices to create/update in the ERP.
Selection criteria includes the Export Flag and Invoice Status.

	Method
	GET

	API
	https://<your instance hostname>/api/invoices/

	Query Params
	filter=<your API filter name>
offset=10
exported=false
status[in]=approved,voided

	Sample URL
	https://<your instance hostname>/api/invoices?filter=<your API filter name>&offset=10&exported=false&status[in]=approved,voided

	Query Body sample
	N/A

	Response Body sample
	[image: ]



	Step 3
	Start Integration Run

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_runs/<Integration Run ID>/run

	Query Params
	N/A

	Query Body sample
	{
  "total_records": <Total Number of Invoices from Step 2>
}

	Response Body sample
	{
  "id": <Integration Run ID>,
...
}




	Step 4
	Mark individual Invoice as exported

	Method
	PUT

	API
	https://<your instance hostname>/api/invoices/<Invoice id>

	Query Params
	exported=true
fields=["id","exported"]

	Sample URL
	https://<your instance hostname>/api/invoices/<Invoice id>?exported=true
fields=["id","exported"]

	Query Body sample
	N/A

	Response Body sample
	{
  "id": <Invoice id>,
  "exported": true
}



That’s where the creation/update of the Invoice in the ERP happens

	Step 5a
	Get unresolved Integration History Record

	Method
	GET

	API
	https://<your instance hostname>/api/integration_history_records


	Query Params
	resolved=false
document-type=InvoiceHeader
document-id=<Invoice id>
fields=["id","document-id","status","resolved"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records?resolved=false&document-type=InvoiceHeader&document-id=<Invoice id>&fields=["id","document-id","status","resolved"]


	Query Body sample
	N/A

	Response Body sample
	[
  {
    "id": <Old Integration History Record id>,
    "document-id": <Invoice id>,
    "status": "Error",
    "resolved": false
  }
]




	Step 5b
	Resolve previous Integration History Record

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_history_records/<Old Integration History Record id>/resolve


	Query Params
	fields=["id","document-id","status","resolved"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records/<Old Integration History Record id>/resolve?fields=["id","document-id","status","resolved"]


	Query Body sample
	N/A

	Response Body sample
	[
  {
    "id": <Old Integration History Record id>,
    "document-id": <Invoice id>,
    "status": "Error",
    "resolved": true
  }
]




	Step 6a
	Get unresolved Integration Error Record

	Method
	GET

	API
	https://<your instance hostname>/api/integration_errors


	Query Params
	resolved=false
document-type=InvoiceHeader
document-id=<Invoice id>

	Sample URL
	https://<your instance hostname>/api/integration_errors?resolved=false&document-type=InvoiceHeader&document-id=<Invoice id>


	Query Body sample
	N/A

	Response Body sample
	[
  {
    "id": <Old Integration Error Record id>,
     "document-type": ”InvoiceHeader”,
    "document-id": <Invoice id>,
    "status": "Error",
    "resolved": false
...
  }
]




	Step 6b
	Resolve previous Integration History Record

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_errors/<Old Integration Error Record id>/resolve


	Query Params
	N/A

	Query Body sample
	N/A

	Response Body sample
	[
  {
    "id": <Old Integration Error Record id>,
    "document-id": <Invoice id>,
    "status": "Error",
    "resolved": true
...
  }
]




	Step 7a
	Update a Custom Fields for ERP document number (Success)

	Method
	PUT

	API
	https://<your instance hostname>/api/invoices/<Invoice id>

	Query Params
	fields=["id","exported",{ "custom_fields": {} }]

	Sample URL
	https://<your instance hostname>/api/invoices/<Invoice id>?fields=["id","exported",{ "custom_fields": {} }]

	Query Body sample
	{
  "custom-fields": {
    "cf-erp-invoice-number": "<Invoice number in the ERP>"
  }}

	Response Body sample
	{ "id": <Invoice id>,
  "exported": true,
  "custom-fields": {
    "cf-erp-invoice-number": "<Invoice number in the ERP>"
  }}




	Step 7b
	Create Integration History (Success)
It must reference the Integration Run

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_history_records

	Query Params
	fields=["id","document-id","status"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records?fields=["id","document-id","status"]

	Query Body sample
	{
  "document-type": "InvoiceHeader",
  "document-id": <Invoice id>,
  "document-status":"<Invoice status>",
  "contact-alert-type": "Functional",
  "status": "Success",
  "integration": {"code":"<Customer Integration id>"},
  "integration-run": {"id":<Integration Run ID>},
  "responses": [
    {
      "response-code": "Success-1234",
      "response-message": "The integration in the ERP went well"
    }
  ]}

	Response Body sample
	{
  "id": <New Integration History Record id>,
  "document-id": <Invoice id>,
  "status": "Success"
}






	Step 7c
	Create Integration Error and alert to Integration Contact
It must reference the Integration Run

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_errors/create_alert

	Query Params
	N/A

	Query Body sample
	{
  "document-type": "InvoiceHeader",
  "document-id": <Invoice id>,
  "document-status":"<Invoice status>",
  "contact-alert-type": "Functional",
  "status": "Error",
   "integration-run-id": "<Integration Run ID>",
  "responses": [
   {
      "response-code": "Failure-CC",      "response-message": "Header: Period is currently closed for Booking"
    },
    {
      "response-code": "Failure-CC",
      "response-message": "Line 1: Cost center CA234 is closed for invoicing"
    }

  ]
}

	Response Body sample
	{
  "id": <New Integration Error Record id>,
  "document-id": <Invoice id>,
  "status": "Error"
...
}


[bookmark: _ccodeg4eq6y4]
[bookmark: _6bcstohdim5c]





	Step 8
	Successfully End Integration Run

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_runs/<Integration Run ID>/success

	Query Params

	N/A

	Query Body sample
	N/A

	Response Body sample
	{
  "id": <Integration Run ID>,
 "status": "successful"
...
}




If there is a general failure during the Integration run

	Step x
	Raise Failure for the Integration Run

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_runs/<Integration Run ID>/fail

	Query Params

	N/A

	Query Body sample
	N/A

	Response Body sample
	{
  "id": <Integration Run ID>,
 "status": "failed"
...
}
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