[bookmark: _jcp7bralemqc]Purchase Orders & PO Changes Integration into your ERP
[bookmark: _el852u6v48rj]Introduction
[bookmark: _ccw4rldt53nd]General API Setup Considerations
Get Started with the Coupa API
API Key Security (will eventually get deprecated)
Open Connect API Access (R29 onward)	Comment by Troy Rothert: Make sure success portal link has all information on how to set up Open Connect API
JSON/XML
GraphQL (R30 onward)
[bookmark: _zcoii7azq14j]Limited Payload - Fields & API Filters
Coupa's API returns a lot of data by default (for example: full objects for associated objects). The API return payloads can be very large and therefore slow. This can be a problem for customers that do not need the extraneous data not to mention the unnecessary consumption of resources.
To make things easier, Coupa has the concept of the “fields” parameter & API Filters that return a limited JSON or XML response instead of the entire schema, and all associations, for an object.
API Response Filters
API: Using the new API query parameter "fields", Alternative to "return object"
[bookmark: _jbr0tkppld3g]Use cases described in this Article
The assumption in this document is that the Purchase Order number in the ERP is driven by the Coupa Purchase Order Number

This Article describes the 3 different options to Integrate Coupa Purchase Orders into your ERP(for both creation and updates).

These options will change the way you can monitor your integrations from Coupa

· Option 1: Simple monitoring based on custom field(s) you define on the Order Header
· Option 2: Advanced monitoring using Integration History records
· Option 3: Leverage full Coupa Integrations monitoring

For the 3 options, the Coupa POs are pushed to the ERP based on the Export Flag.
In case of an error, in the Integration of a PO, a manual change will be required on the PO in the Coupa UI: this change will reset the Export Flag, and the PO will therefore be considered in the next run

We recommend to have the following option set (request to Coupa Support)

Reset PO last exported at for every change
This setting only applies to the UI, changes made with API don’t change the Exported status.
[bookmark: _grq6lqifjnaj]Create dedicated Integration and Contact for API
For option 2 & 3, you will need to create:

· A dedicated Integration for each API Orchestration you implement.
[image:]
· One or several Integration contact(s) for each integration, that will be alerted for any failed integration
[image:]

We recommend to have the following option set (request to Coupa Support)

Enable link to Integration History by Document Type
This setting adds a link in the setup page to view full Integration History per document type

[bookmark: _c78h7p79oglq]Option 1: Simple monitoring based on custom field(s)
[bookmark: _v2sxj481pcrj]Description
In this scenario, for each PO we:
· Add the current Integration status in one or several PO header custom field(s)

In our example the custom field cf-integration-status was created with name Integration Status

You will use the Standard PO Data Table to follow up the Integration status of your documents.

https://<your instance hostname>/order_headers
[image:]

[bookmark: _ey31q2fc4qd7]Orchestration Diagram
[image:]
	Comment by Troy Rothert: Instead of "POs Matching" put "POs in the following Status"	Comment by Troy Rothert: Also test to see if updating custom field for reporting flips exported flag	Comment by Vadim Courtheoux: From my tests, update through API never changes export flag (whatever the setup key is)
I understood that's by design as we assume API orchestration would handle this explicitely
[bookmark: _wg5tgkfslbg8]Steps / API calls details

	Step 1
	Get the list and details of the Coupa Purchase Orders to create/update in the ERP.
Selection criteria includes the Export Flag and PO Status.
Query parameter show_deleted_lines can be necessary to handle the PO update in the ERP

	Method
	GET

	API
	https://<your instance hostname>/api/purchase_orders/

	Query Params
	filter=<your API filter name>	Comment by Troy Rothert: Possibly change this to "fields" parameter
offset=10
exported=false
show_deleted_lines=true*
status[in]=issued,canceled,closed

	Sample URL
	https://<your instance hostname>/api/purchase_orders?filter=<your API filter name>&offset=10&exported=false&show_deleted_lines=true&status[in]=issued,canceled,closed	Comment by Troy Rothert: Possibly change this to "fields" parameter

	Query Body sample
	N/A

	Response Body sample
	[image:]

* = show_deleted_lines=true is for PO changes

	Step 2
	Mark individual PO as exported

	Method
	PUT

	API
	https://<your instance hostname>/api/purchase_orders/<Purchase Order id>

	Query Params
	exported=true
fields=["id","exported"]

	Sample URL
	https://<your instance hostname>/api/purchase_orders/<Purchase Order id>?exported=true&fields=["id","exported"]

	Query Body sample
	N/A *

	Response Body sample
	{
 "id": <Purchase Order id>,
 "exported": true
}

· * For this call you do not need a payload if you include “?exported=true” in the URL

That’s where the creation/update of the PO in the ERP happens

	Step 3
	Update a Custom Fields for Reporting

	Method
	PUT

	API
	https://<your instance hostname>/api/purchase_orders/<Purchase Order id>

	Query Params
	fields=["id","exported",{ "custom_fields": {} }]

	Sample URL
	https://<your instance hostname>/api/purchase_orders/<Purchase Order id>?fields=["id","exported",{ "custom_fields": {} }]

	Query Body sample
	{ "custom-fields": {
 "<your custom-field name>": "Success: The PO was properly replicated in your ERP"
 }}
OR
{ "custom-fields": {
 "<your custom-field name>": "Error: The PO was properly replicated in your ERP"
 }}

	Response Body sample
	{ "id": <Purchase Order id>,
 "exported": true,
 "custom-fields": {
 "<your custom-field name>": "Success: The PO was properly replicated in your ERP"
 }}
OR
{ "id": <Purchase Order id>,
 "exported": true,
 "custom-fields": {
 "<your custom-field name>": "Error: The PO was properly replicated in your ERP"
 }}

[bookmark: _qsf3yk6fikh]Option 2: Advanced monitoring using Integration History
[bookmark: _84ryg6z691q5]Description
In this scenario, for each PO we:
· Resolve the previous Integration History Record for the document
· Create an Integration History Record
· Create an Alert to the Integration Contact in case of an error

Each document includes the Integration History details
[image:][image:]

You will use the Standard PO Integration History Data Table to follow up the Integration status of your documents

https://<your instance hostname>/integration_history_records/purchase_orders
[image:]

You can use a filter on Response Code to differentiate between documents successfully replicated and documents that failed
[image:]
[bookmark: _m254tj81re5u]

[bookmark: _3vdo3ewkwkvj]Orchestration Diagram
[image:]

[bookmark: _ath06859oqax]Steps / API calls details

	Step 1
	Get the list and details of the Coupa Purchase Orders to create/update in the ERP.
Selection criteria includes the Export Flag and PO Status.
Query parameter show_deleted_lines can be necessary to handle the PO update in the ERP

	Method
	GET

	API
	https://<your instance hostname>/api/purchase_orders/

	Query Params
	filter=<your API filter name>
offset=10
exported=false
show_deleted_lines=true
status[in]=buyer_hold,issued,canceled,closed,soft_closed

	Sample URL
	https://<your instance hostname>/api/purchase_orders?filter=<your API filter name>&offset=10&exported=false&show_deleted_lines=true&status[in]=buyer_hold,issued,canceled,closed,soft_closed

	Query Body sample
	N/A

	Response Body sample
	[image:]

	Step 2
	Mark individual PO as exported

	Method
	PUT

	API
	https://<your instance hostname>/api/purchase_orders/<Purchase Order id>

	Query Params
	exported=true
fields=["id","exported"]

	Sample URL
	https://<your instance hostname>/api/purchase_orders/<Purchase Order id>?exported=true&fields=["id","exported"]

	Query Body sample
	N/A

	Response Body sample
	{
 "id": <Purchase Order id>,
 "exported": true
}

That’s where the creation/update of the PO in the ERP happens
	Step 3a
	Get unresolved Integration History Record

	Method
	GET

	API
	https://<your instance hostname>/api/integration_history_records

	Query Params
	resolved=false
document-type=OrderHeader
document-id=<Purchase Order id>
fields=["id","document-id","status","resolved"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records?resolved=false&document-type=OrderHeader&document-id=<Purchase Order id>&fields=["id","document-id","status","resolved"]

	Query Body sample
	N/A

	Response Body sample
	[
 {
 "id": <Old Integration History Record id>,
 "document-id": <Purchase Order id>,
 "status": "Error",
 "resolved": false
 }
]

	Step 3b
	Resolve previous Integration History Record

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_history_records/<Old Integration History Record id>/resolve

	Query Params
	fields=["id","document-id","status","resolved"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records/<Old Integration History Record id>/resolve?fields=["id","document-id","status","resolved"]

	Query Body sample
	N/A

	Response Body sample
	[
 {
 "id": <Old Integration History Record id>,
 "document-id": <Purchase Order id>,
 "status": "Error",
 "resolved": true
 }
]

	Step 4a
	Create Integration History (Success)

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_history_records

	Query Params
	fields=["id","document-id","status"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records?fields=["id","document-id","status"]

	Query Body sample
	{
 "document-type": "OrderHeader",
 "document-id": <Purchase Order id>,
 "document-status":"<Purchase Order status>",
 "contact-alert-type": "Functional",
 "status": "Success",
 "integration": {"code":"<Customer Integration id>"},
 "responses": [
 {
 "response-code": "Success-1234",
 "response-message": "The integration in the ERP went well"
 }
]
}

	Response Body sample
	{
 "id": <New Integration History Record id>,
 "document-id": <Purchase Order id>,
 "status": "Success"
}

	Step 4b
	Create Integration History (Error) and alert to Integration Contact

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_history_records/create_alert

	Query Params
	fields=["id","document-id","status"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records/create_alert?fields=["id","document-id","status"]

	Query Body sample
	{
 "document-type": "OrderHeader",
 "document-id": <Purchase Order id>,
 "document-status":"<Purchase Order status>",
 "contact-alert-type": "Functional",
 "status": "Error",
 "integration": {"code":"<Customer Integration id>"},
 "responses": [
 {
 "response-code": "Failure-CC",
 "response-message": "Line 1: Cost center CA234 is closed for ordering"
 },
 {
 "response-code": "Failure-date",
 "response-message": "Line 2: Delivery date cannot be in the past"
 }
]
}

	Response Body sample
	{
 "id": <New Integration History Record id>,
 "document-id": <Purchase Order id>,
 "status": "Error"
}

[bookmark: _kzc0c49p76k2]
[bookmark: _o1yyzy27b9mh]

[bookmark: _wbmd8fic8ha6]Option 3: Leverage full Coupa Integrations monitoring
[bookmark: _myiff1438i3j]Description
In this scenario, we create an Integration run that tracks
· The status of the Integration (pending/started/errored/successful/failed)
· The total number of PO processed
· The number of Success and Errors
· The list of Integration Errors and their statuses (resolved or not)

For each PO we:
· Resolve the previous Integration History Record for the document
· Create an Integration History Record
· In case of an error, create an Integration Error and an Alert to the Integration Contact

You will be able to monitor all Integration Runs for your Integration

https://<your instance hostname>/integrations/<your integration id>/integration_runs
[image:]

You will use the Standard PO Integration Error Data Table to list all POs with Integration Error pending resolution

https://<your instance hostname>/integration_errors
[image:]

You will use the Standard PO Integration History Data Table to list all POs successfully Integrated

https://<your instance hostname>/integration_history_records/purchase_orders
[image:]
[bookmark: _3tb6i14kixzx]Orchestration Diagram
[image:]

[bookmark: _9ygmwmud2cgl]Steps / API calls details

	Step 1
	Create Integration Run

	Method
	POST

	API
	https://<your instance hostname>/api/integration_runs

	Query Params
	N/A

	Query Body sample
	{
 "integration": {
 "code": "{{Integration_Code}}"
 }}

	Response Body sample
	{
 "id": <Integration Run ID>,
...
}

	Step 2
	Get the list and details of the Coupa Purchase Orders to create/update in the ERP.
Selection criteria includes the Export Flag and PO Status.
Query parameter show_deleted_lines can be necessary to handle the PO update in the ERP

	Method
	GET

	API
	https://<your instance hostname>/api/purchase_orders/

	Query Params
	filter=<your API filter name>
offset=10
exported=false
show_deleted_lines=true
status[in]=buyer_hold,issued,canceled,closed,soft_closed

	Sample URL
	https://<your instance hostname>/api/purchase_orders?filter=<your API filter name>&offset=10&exported=false&show_deleted_lines=true&status[in]=buyer_hold,issued,canceled,closed,soft_closed

	Query Body sample
	N/A

	Response Body sample
	[image:]

	Step 3
	Start Integration Run

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_runs/<Integration Run ID>/run

	Query Params
	N/A

	Query Body sample
	{
 "total_records": <Total Number of POs from Step 2>
}

	Response Body sample
	{
 "id": <Integration Run ID>,
...
}

	Step 4
	Mark individual PO as exported

	Method
	PUT

	API
	https://<your instance hostname>/api/purchase_orders/<Purchase Order id>

	Query Params
	exported=true
fields=["id","exported"]

	Sample URL
	https://<your instance hostname>/api/purchase_orders/<Purchase Order id>?exported=true
fields=["id","exported"]

	Query Body sample
	N/A

	Response Body sample
	{
 "id": <Purchase Order id>,
 "exported": true
}

That’s where the creation/update of the PO in the ERP happens

	Step 5a
	Get unresolved Integration History Record

	Method
	GET

	API
	https://<your instance hostname>/api/integration_history_records

	Query Params
	resolved=false
document-type=OrderHeader
document-id=<Purchase Order id>
fields=["id","document-id","status","resolved"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records?resolved=false&document-type=OrderHeader&document-id=<Purchase Order id>&fields=["id","document-id","status","resolved"]

	Query Body sample
	N/A

	Response Body sample
	[
 {
 "id": <Old Integration History Record id>,
 "document-id": <Purchase Order id>,
 "status": "Error",
 "resolved": false
 }
]

	Step 5b
	Resolve previous Integration History Record

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_history_records/<Old Integration History Record id>/resolve

	Query Params
	fields=["id","document-id","status","resolved"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records/<Old Integration History Record id>/resolve?fields=["id","document-id","status","resolved"]

	Query Body sample
	N/A

	Response Body sample
	[
 {
 "id": <Old Integration History Record id>,
 "document-id": <Purchase Order id>,
 "status": "Error",
 "resolved": true
 }
]

	Step 6a
	Get unresolved Integration Error Record

	Method
	GET

	API
	https://<your instance hostname>/api/integration_errors

	Query Params
	resolved=false
document-type=OrderHeader
document-id=<Purchase Order id>

	Sample URL
	https://<your instance hostname>/api/integration_errors?resolved=false&document-type=OrderHeader&document-id=<Purchase Order id>

	Query Body sample
	N/A

	Response Body sample
	[
 {
 "id": <Old Integration Error Record id>,
 "document-type": ”OrderHeader”,
 "document-id": <Purchase Order id>,
 "status": "Error",
 "resolved": false
...
 }
]

	Step 6b
	Resolve previous Integration History Record

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_errors/<Old Integration Error Record id>/resolve

	Query Params
	N/A

	Query Body sample
	N/A

	Response Body sample
	[
 {
 "id": <Old Integration Error Record id>,
 "document-id": <Purchase Order id>,
 "status": "Error",
 "resolved": true
...
 }
]

	Step 7a
	Create Integration History (Success)
It must reference the Integration Run

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_history_records

	Query Params
	fields=["id","document-id","status"]

	Sample URL
	https://<your instance hostname>/api/integration_history_records?fields=["id","document-id","status"]

	Query Body sample
	{
 "document-type": "OrderHeader",
 "document-id": <Purchase Order id>,
 "document-status":"<Purchase Order status>",
 "contact-alert-type": "Functional",
 "status": "Success",
 "integration": {"code":"<Customer Integration id>"},
 "integration-run": {"id":<Integration Run ID>},
 "responses": [
 {
 "response-code": "Success-1234",
 "response-message": "The integration in the ERP went well"
 }
]}

	Response Body sample
	{
 "id": <New Integration History Record id>,
 "document-id": <Purchase Order id>,
 "status": "Success"
}

	Step 7b
	Create Integration Error and alert to Integration Contact
It must reference the Integration Run

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_errors/create_alert

	Query Params
	N/A

	Query Body sample
	{
 "document-type": "OrderHeader",
 "document-id": <Purchase Order id>,
 "document-status":"<Purchase Order status>",
 "contact-alert-type": "Functional",
 "status": "Error",
 "integration-run-id": "<Integration Run ID>",
 "responses": [
 {
 "response-code": "Failure-CC",
 "response-message": "Line 1: Cost center CA234 is closed for ordering"
 },
 {
 "response-code": "Failure-date",
 "response-message": "Line 2: Delivery date cannot be in the past"
 }
]
}

	Response Body sample
	{
 "id": <New Integration Error Record id>,
 "document-id": <Purchase Order id>,
 "status": "Error"
...
}

[bookmark: _ccodeg4eq6y4]
[bookmark: _6bcstohdim5c]

	Step 8
	Successfully End Integration Run

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_runs/<Integration Run ID>/success

	Query Params

	N/A

	Query Body sample
	N/A

	Response Body sample
	{
 "id": <Integration Run ID>,
 "status": "successful"
...
}

If there is a general failure during the Integration run

	Step x
	Raise Failure for the Integration Run

	Method
	PUT

	API
	https://<your instance hostname>/api/integration_runs/<Integration Run ID>/fail

	Query Params

	N/A

	Query Body sample
	N/A

	Response Body sample
	{
 "id": <Integration Run ID>,
 "status": "failed"
...
}

image10.png
Integration &di

*Name | PO API Integration
Code customer.api.order
Integration Type api
Direction from_coupa
Business Object OrderHeader
*End System Type | ERP v

*End System | My ERP

Timeout (hours) v 0

image14.png
PO API Integration - Integration Support edit

* Integration Name | PO API Integration

* Alert Type @ Both
O Functional
QO Technical

* Contact Type O User
@ Group
O Supplier

* Group Name | Integration Support

image6.png
Purchase Orders

Overall POs POs by Department ~ POs by Commodity

v
of Orders 2
#of order Lines 2 NN ——
of Suppliers 1
PO Number Order Date ~ Status Transmission Status Integration Status Supplier Items Total
11353 26/06/2020 Issued Sent via Email Success: The PO was properly replicated Deloitte 2 Each of Airbus Service - low 4,700.00
in your ERP (FR) complexity EUR
11352 26/06/2020 Issued Sent via Email Error: The PO could not be replicated in Deloitte 2 Each of Airbus Service - low 4,700.00
your ERP (FR) complexity EUR

Perpage 15 | 45 | 90

image9.png
1. Retrieve POs Matching:
P « buyer_hold, issued, canceled, closed or soft_closed ——
« not exported

|
For Each PO

{

)
t

2. Mark PO as exported

Create or Update PO

Success or Failure

M) 3. Update custom field for Reporting with Error Message

-

image7.png
2>
165
166 >
420
421
422
423
424
425
426
427
428
429
430

"id": 9,

"created-at": "2008-10-29T22:28:18+01:00",
"updated-at": "2013-12-06T03:11:08+01:00",
"po-numbexr": "9",

"price-hidden": false,
"acknowledged-flag": false,
"acknowledged-at": null,
"status": "closed",
"transmission-status": "created",

image11.png
(v Integration History

PO API Integration

10/04/2021 16:11 by API key: Middleware API
Response Message: Success-1234 The integration in the ERP went well

image1.png
(v Integration History

PO API Integration

10/04/2021 15:45 by API key: Middleware API
Response Message: Failure-CC Line 1: Cost center CA234 is closed for ordering
Response Message: Failure-date Line 2: Delivery date cannot be in the past

image5.png
Purchase Order Integration Records

Purchase Orders Receipts Invoices

Resolved Actions

Document PO Created Date Document Status Requester Response Codes Response Messages

Integration
PO API OrderHeader 26-06-2020 issued Vadim Failure-CC, Line 1: Cost center CA234 is closed for No Q
Integration 11352 Courtheoux Failure-date ordering, Line 2: Delivery date cannot be

in the past
PO API OrderHeader 26-06-2020 issued Vadim Success-1234 The integration in the ERP went well No Q
Integration 11353 Courtheoux

Perpage 15 | 45 | 90

image4.png
Purchase Order Integration Records

Purchase Orders Receipts Invoices

Add group of conditions

L

Resolved Actions

Match Conditions | Match all conditions ~

Filter By | Response Codes v |Filter Clause | contains v | Filter Text Failure

Document PO Created Date Document Status Requester Response Codes Response Messages

Integration
PO API OrderHeader 26-06-2020 issued Vadim Failure-CC, Line 1: Cost center CA234 is closed for No Q
Integration 11352 Courtheoux Failure-date ordering, Line 2: Delivery date cannot be

in the past

Perpage 15 | 45 | 90

image8.png
1. Retrieve POs Matching: |
—— « buyer_hold, issued, canceled, closed or soft_closed P |
« not exported
> |
T For Each PO |
|
“ |
2. Mark PO as exported
|
e Create or Update PO
> |
3a. Get unresolved Integration Histol | -
d v L] Success or Failure
with Error Message
i
3b. Resolve previous Integration History
-
—~L
4a.Create Integration History (Success)
=
|
|
4b.Create Integration History (Error) and Alert
T
l J
1 1

image3.png
PO API Integration

Properties Runs Errors Contacts

Id Integration Status Start Time End Time Success Count Error Count
I 175 PO API Integration successful 10/04/2021 17:06 10/04/2021 17:07 2 0
174 PO API Integration errored 10/04/2021 16:55 10/04/2021 17:00 1 1

173 PO API Integration errored 10/04/2021 16:38 10/04/2021 16:48 0

172 PO API Integration failed 10/04/2021 11:34 10/04/2021 11:35 0

N © N

171 PO API Integration errored 10/04/2021 19:25 10/04/2021 20:25 1

image2.png
Integration Errors

Match Conditions | Match all conditions v Add group of conditions
Filter By | Resolved v |is [No v 0
Document Id Integration Run Contact Alert Type Resolved Response Codes Response Messages File Name Actions
OrderHeader 14497 PO API Functional No Failure-CC, Line 1: Cost center CA234 is closed for N/A Q
11351 Integration #174 Failure-date ordering, Line 2: Delivery date cannot be in
the past

Perpage 15 | 45 | 90

image13.png
Purchase Order Integration Records

Purchase Orders Receipts Invoices

Resolved Actions

Document PO Created Date Document Status Requester Response Codes Response Messages

Integration

PO API OrderHeader 18-10-2018 issued Sarah Success-1234 The integration in the ERP No Q
Integration 11349 Truax went well

PO API OrderHeader 18-10-2018 issued Lars Success-1234 The integration in the ERP No Q
Integration 11350 Jacobs went well

Perpage 15 | 45 | 90

image12.png
1. Create Integration Run

-

2. Retrieve POs Matching:

« buyer_hold, issued, canceled, closed or soft_closed

« not exported

|
— :
3.Start Integration Run
S
) 4. Mark PO as exported
— 5a. Get unresolved Integration History
-

For Each PO

Create or Update PO

5b. Resolve previous Integration History

6a. Get unresolved Integration Errors

{

|-

6b. Resolve previous Integration Errors

7a.Create successful Integration History

7c.Create Integration Error and Alert

8. End Integration Run

-

-

Success or Failure
with Error Message

